QUE ES TELEMATICA.
La Telemática cubre un campo científico y tecnológico de una considerable amplitud, englobando el estudio, diseño, gestión y aplicación de las redes y servicios de comunicaciones, para el transporte, almacenamiento y procesado de cualquier tipo de información (datos, voz, vídeo, etc.), incluyendo el análisis y diseño de tecnologías y sistemas de conmutación. La Telemática abarca entre otros conceptos los siguientes planos funcionales:
- El plano de usuario, donde se distribuye y procesa la información de los servicios y aplicaciones finales;
- El plano de señalización y control, donde se distribuye y procesa la información de control del propio sistema, y su interacción con los usuarios;
- El plano de gestión, donde se distribuye y procesa la información de operación y gestión del sistema y los servicios, y su interacción con los operadores de la red.
TELEINFORMATICA.
Se denomina Teleinformatica o Telematica a la técnica que trata de la comunicación de datos y realización de procesos entre equipos informaticos distantes.
Al conjunto de equipos, medios de comunicación y software utilizados para la realización de una determinada aplicación informática se le denomina sistema teleinformatico.
Un sistema teleinformatico básico consta de un terminal remoto desde el cual se envían los datos a una computadora central o host, a través de una línea de telecomuncion para su proceso y posterior recepción de resultados.
Los módem, contracción de modulador-demodulador, transforman la señal digital en analógica y viceversa mediante algún tipo de modulación. También se ocupan de controlar la calidad de la comunicación detectando y en algunos casos corrigiendo los errores que se producen. Pueden ser externos o internos según su ubicación respecto del terminal.
Los adaptadores, a diferencia de los módems, no varían la forma de la señal sino solamente la magnitud de esta para adaptarla convenientemente al tipo de línea utilizada.
MULTIPLEXOR.
Los multiplexores son circuitos combinacionales con varias entradas y una única salida de datos, están dotados de entradas de control capaces de seleccionar una, y sólo una, de las entradas de datos para permitir su transmisión desde la entrada seleccionada hacia dicha salida.
En el campo de la electrónica el multiplexor se utiliza como dispositivo que puede recibir varias entradas y transmitirlas por un medio de transmisión compartido. Para ello lo que hace es dividir el medio de transmisión en múltiples canales, para que varios nodos puedan comunicarse al mismo tiempo.
Una señal que está multiplexada debe demultiplexarse en el otro extremo.
Según la forma en que se realice esta división del medio de transmisión, existen varias clases de multiplexación:
CODIFICACION.
El término codificación es tanto la acción de codificar, es
decir, de transformar un contenido a un código, así como los
sistemas de códigos derivados de aquélla. Puede referirse a:
Codificación digital
Se entiende por Codificación en el contexto de la Ingeniería al proceso de conversión de un sistema de datos de origen a otro sistema de datos de destino. De ello se desprende como corolario que la información contenida en esos datos resultantes deberá ser equivalente a la información de origen. Un modo sencillo de entender el concepto es aplicar el paradigma de la traducción entre idiomas en el ejemplo siguiente: home = hogar. Podemos entender que hemos cambiado una información de un sistema (inglés) a otro sistema (español) y que esencialmente la información sigue siendo la misma. La razón de la codificación está justificada por las operaciones que se necesiten realizar con posterioridad. En el ejemplo anterior para hacer entendible a una audiencia hispana un texto redactado en inglés es convertido al español.
Codificación de caracteres
La codificación de caracteres es el método que permite convertir un carácter de un lenguaje natural (alfabeto o silabario) en un símbolo de otro sistema de representación, como un número o una secuencia de pulsos eléctricos en un sistema electrónico, aplicando normas o reglas de codificación.
MICROONDAS.
Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias determinado; generalmente de entre 300 MHz y 300 GHz, que supone un período de oscilación de 3 ns (3×10-9 s) a 3 ps (3×10-12 s) y una longitud de onda en el rango de 1 m a 1 mm. Otras definiciones, por ejemplo las de los estándares IEC 60050 y IEEE 100 sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro.
El rango de las microondas está incluido en las bandas de radiofrecuencia, concretamente en las de UHF (ultra-high frequency - frecuencia ultra alta) 0,3–3 GHz, SHF (super-high frequency - frecuencia super alta) 3–30 GHz y EHF (extremely-high frequency - frecuencia extremadamente alta) 30–300 GHz. Otras bandas de radiofrecuencia incluyen ondas de menor frecuencia y mayor longitud de onda que las microondas. Las microondas de mayor frecuencia y menor longitud de onda —en el orden de milímetros— se denominan ondas milimétricas.
La existencia de ondas electromagnéticas, de las cuales las microondas forman parte del espectro de alta frecuencia, fueron predichas por Maxwell en 1864 a partir de sus famosasEcuaciones de Maxwell. En 1888, Heinrich Rudolf Hertz fue el primero en demostrar la existencia de ondas electromagnéticas mediante la construcción de un aparato para generar y detectar ondas de radiofrecuencia.
FOTOFONO.
El Fotófono fue un dispositivo que permitía la transmisión de sonido por medio de una emisión de luz, inventado por Alexander Graham Bellen colaboración con Charles Sumner Tainter. El dispositivo utilizaba celdas sensibles a la luz elaboradas con cristal de selenio, una de sus propiedades es que la resistencia eléctrica varía inversamente con la iluminación. El principio básico del fotófono consistía en modular una emisión de luz directamente al receptor, fabricado en Selenio, que era donde se conectaba un teléfono. La modulación era hecha por un espejo vibratorio o por un disco rotatorio que periódicamente obscurecían el haz de luz.
La idea no era nueva, el Selenio había sido descubierto por Jöns Jakob Berzelius en 1817, y sus propiedades peculiares en forma de cristales o granulado fueron precisadas por Willoughby Smith en 1873. En 1878, un escritor con las iniciales J.F.W. publicó el 13 de juniouna columna en Nature, preguntando si algún experimento al respecto había sido realizado. Este artículo se le atribuye a Bell. En su papel en el fotofóno, Bell acredito a A.C. Browne de Londres con el descubrimiento independiente en 1878. Pero Bell y Tainter fueron los primeros en desarrollar un procedimiento exitoso, lo que no se consideraba una tarea fácil debido a que se requería fabricar las celdas de selenio con las características requeridas en resistencia.
En un experimento en Washington DC, el emisor y el receptor fueron situados en diferentes edificios a unos 700 pies de separación. El emisor consistía en un espejo que dirigía la luz del sol para ser modulado por un espejo vibratorio y enfocado por un lente que lo dirigía al receptor. El receptor consistía de un reflector parabólico con las celdas de selenio en el foco y un teléfono incorporado. Con este arreglo Bell y Tainter obtuvieron éxito para comunicarse claramente.
El fotofóno fue patentado el 18 de diciembre de 1880, pero la calidad de comunicación permaneció pobre y la investigación no fue continuada por Bell. Posteriormente este invento sirvió como base al desarrollo de las comunicaciones utilizando fibra óptica y láser.
LASER.
Un láser (de la sigla inglesa light amplification by stimulated emission of radiation, amplificación de luz por emisión estimulada de radiación) es un dispositivo que utiliza un efecto de la mecánica cuántica, la emisión inducida o estimulada, para generar un haz de luz coherente de un medio adecuado y con el tamaño, la forma y la pureza controlados.
En 1916, Albert Einstein estableció los fundamentos para el desarrollo de los láseres y de sus predecesores, los máseres (que emiten microondas), utilizando la ley de radiación de Max Planckbasada en los conceptos de emisión espontánea e inducida de radiación.
En 1928 Rudolf Landenburg informó haber obtenido la primera evidencia del fenómeno de emisión estimulada de radiación, aunque no pasó de ser una curiosidad de laboratorio, por lo que la teoría fue olvidada hasta después de la Segunda Guerra Mundial, cuando fue demostrada definitivamente por Willis Eugene Lamb y R. C. Rutherford.
En 1953, Charles H. Townes y los estudiantes de postgrado James P. Gordon y Herbert J. Zeigerconstruyeron el primer máser: un dispositivo que funcionaba con los mismos principios físicos que el láser pero que produce un haz coherente de microondas. El máser de Townes era incapaz de funcionar en continuo. Nikolái Básov y Aleksandr Prójorov de la Unión Soviética trabajaron independientemente en el oscilador cuántico y resolvieron el problema de obtener un máser de salida de luz continua, utilizando sistemas con más de dos niveles de energía. Townes, Básov y Prójorov compartieron el Premio Nobel de Física en 1964 por "los trabajos fundamentales en el campo de la electrónica cuántica", los cuales condujeron a la construcción de osciladores y amplificadores basados en los principios de los máser-láser.
Procesos
Los láseres constan de un medio activo capaz de generar el láser. Hay cuatro procesos básicos que se producen en la generación del láser, denominados bombeo, emisión espontánea de radiación, emisión estimulada de radiación y absorción.
Bombeo
En el láser el bombeo puede ser eléctrico u óptico, mediante tubos de flash o luz. Puede provocarse mediante una fuente de radiación como una lámpara, el paso de una corriente eléctrica, o el uso de cualquier otro tipo de fuente energética que provoque una emisión
Resonador óptico
Está compuesto por dos espejos que logran la amplificación y a su vez crean la luz láser. Dos tipos de resonadores: Resonador estable, emite un único haz láser, y Resonador Inestable, emite varios haces.
Emisión estimulada de radiación
La emisión estimulada, base de la generación de radiación de un láser, se produce cuando un átomo en estado excitado recibe un estímulo externo que lo lleva a emitir fotones y así retornar a un estado menos excitado. El estímulo en cuestión proviene de la llegada de un fotón con energía similar a la diferencia de energía entre los dos estados. Los fotones así emitidos por el átomo estimulado poseen fase, energía y dirección similares a las del fotón externo que les dio origen. La emisión estimulada descrita es la raíz de muchas de las características de la luz láser. No sólo produce luz coherente y monocroma, sino que también "amplifica" la emisión de luz, ya que por cada fotón que incide sobre un átomo excitado se genera otro fotón.
FIBRA OPTICA.
.jpg)

